
BRUSCHETTA: An IoT Blockchain-Based
Framework for Certifying Extra Virgin Olive Oil

Supply Chain
Antonio Arena

Information Engineering dept.
University of Pisa

Pisa, Italy
antonio.arena@ing.unipi.it

Alessio Bianchini
GEOSTECH s.r.l.

Livorno, Italy
bianchini@geostech.it

Pericle Perazzo
Information Engineering dept.

University of Pisa
Pisa, Italy

pericle.perazzo@iet.unipi.it

Carlo Vallati
Information Engineering dept.

University of Pisa
Pisa, Italy

carlo.vallati@iet.unipi.it

Gianluca Dini
Information Engineering dept.

University of Pisa
Pisa, Italy

gianluca.dini@iet.unipi.it

Abstract—Urban population is expected to continuously grow
in size. The smart city concepts allows to handle the new
challenges and issues created by this growth by applying a wide
range of technologies that can provide citizens with a better
living environment. Smart agriculture will play an important
part of smart cities, as a sustainable and high quality food supply
chain is crucial to facilitate the grow of human agglomerates. In
this context, European laws imposes very strict requirements in
the food industry, in order to ensure that food provenance is
always guaranteed. Such fine-grained traceability can be only
achieved by applying state-of-the-art technologies. In this paper,
we present BRUSCHETTA, a blockchain-based application for
the traceability and the certification of the Extra Virgin Olive Oil
(EVOO) supply chain. EVOO is an emblematic food product for
Italy, but it is also one of the most falsified ones. BRUSCHETTA
provides a blockchain-based system to enforce the certification
of this product by tracing its entire supply chain: from the
plantation to the shops. The goal is to enable the final customer
to access a tamper-proof history of the product, including
the farming, harvesting, production, packaging, conservation,
and transportation processes. BRUSCHETTA leverages Internet
of Things (IoT) technologies in order to interconnect sensors
dedicated to EVOO quality control, and to let them operate on
the blockchain. We also provide a support for the correct tailoring
of the BRUSCHETTA blockchain system, and we propose a
mechanism for its dynamic auto-tuning to optimize it in case
of high loads.

Index Terms—Smart Cities, Smart Agricolture, Blockchain,
Hyperledger Fabric, Food supply chain monitoring, Performance
evaluation

I. INTRODUCTION

Due to the rapid growth of the population density in
urban cities, much higher requirements are set for munici-
pality governors to manage all aspects in urban living. Re-
cent technologies developments are offering the possibility to
revolutionizing many aspects of the cities by making them

smarter [1]. The adoption of technologies, such as the Internet
of Things (IoT), is expected to play a crucial part in improving
city functions to ensure, on one side, a sustainable growth, on
the other, to improve citizens’ living conditions [2].

Smart agriculture plays an important part in smart cities, to
create a sustainable and high quality food supply chain [3].
State-of-the-art technologies are already improving the effi-
ciency of the food production process. In order to ensure that
quality standards are satisfied, European laws imposes very
strict requirements in the food industry, which can be met only
by massively employing novel technologies [4]. Fine-grained
traceability, in particular, is imposed, in order to ensure that
complete provenance can always be certified.

In this paper, we present BRUSCHETTA, a blockchain-
based application for the traceability and the certification of
Extra Virgin Olive Oil (EVOO). EVOO is an emblematic
product for Italy, known and appreciated in the entire world.
Unfortunately, it is also one of the most falsified food products
[5]. BRUSCHETTA provides a blockchain-based system to
enforce the certification of this product by tracing the entire
process of production: from the plantation to the shops. Its
goal is to enable a final user (the one that buys the product) to
access a tamper-proof copy of the entire history of the product,
that is the farming process, harvesting, production, packaging,
conservation, and transportation, for example through its own
smartphone. BRUSCHETTA leverages IoT technologies in or-
der to interconnect sensors dedicated to EVOO quality control,
and to let them operate on the blockchain. We also provide
a support for the correct tailoring of the BRUSCHETTA
blockchain system, and we propose a mechanism for dynamic
auto-tuning of parameters that can maintain our system suit-
able for an industrial scenario, even in case of high network
loads.

The rest of the paper is organized as follows. Section II
introduces the main technological aspects of the blockchain
technology. Section III introduces the BRUSCHETTA system
model and our threat model. Section IV presents and discusses
the results of our performance evaluation of BRUSCHETTA.
Section V presents the proper tailoring of the BRUSCHETTA
blockchain system and the dynamic auto-tuning mechanism.
Finally, Section VI concludes the paper.

II. BLOCKCHAIN

A blockchain can be defined as an immutable ledger for
recording transactions, maintained within a distributed net-
work of mutually untrusted nodes. A blockchain is a list of
ordered blocks, where each block stores a variable-size list of
transactions. Nodes can generate and read transactions and/or
participate in the consensus protocol, which allows nodes to
agree on which transactions compose a block and in which
order. The nodes that participate in the consensus protocol
are called peers. The peers execute a consensus protocol to
validate transactions, group them into blocks that include a
hash value that bind each block to the preceding block. Dif-
ferent consensus protocols are possible, with different security
properties.

The first and most widely recognized application of
blockchain is the Bitcoin cryptocurrency [6], which allows
the nodes to enable digital money transfers on an untrusted
network of nodes without the financial brokering of a trusted
third party, such as a central bank. This application, like other
financial applications, use a class of blockchains called public
or permissionless. In a public blockchain virtually anyone
can participate, and every participant is anonymous. Public
blockchains typically involve a native cryptocurrency and often
use a resource-demanding consensus protocol, such as the
Proof of Work (PoW) protocol, and economic incentives for
peers to participate in such protocol.

In addition to cryptocurrency and financial applications, the
blockchain technology is promising in several other scenarios
like smart homes [7], smart grids [8], healthcare [9], smart
cities [10], and so on. However, many of these scenarios
require performance characteristics that the permissionless
blockchain technologies are unable (presently) to deliver, such
as transaction low latency and high throughput. In addition, in
many scenarios, knowing the identity of the participants is a
hard requirement, such as in the case of financial transactions
where Know-Your-Customer (KYC) and Anti-Money Laun-
dering (AML) regulations must be followed. For this purpose,
permissioned blockchains have been introduced. Permissioned
blockchains run among a set of known, identified participants.
By relying on the identities of the peers, a permissioned
blockchain can use traditional Byzantine-fault tolerant (BFT)
consensus protocols [11], [12], which do not require many
resources.

III. BRUSCHETTA SYSTEM MODEL

The EVOO supply chain involves four different parties: (i)
the farmers, which are responsible for olives farming and

Farmer
Organization

Makers
Organization

Couriers
Organization

Sellers
Organization

Farmers Makers Couriers Sellers

Hyperledger Fabric

Fig. 1. BRUSCHETTA architecture

Organization 1

...

Peer 1 Peer 2 Peer N

Orderer

Organization 2

...

Peer 1 Peer 2 Peer N

Orderer

Node 2Node 1 Node M

...
Node 2Node 1 Node M

...

Fig. 2. Hyperledger Fabric model

harvesting; (ii) the makers, which are responsible for the
transformation process from olives to EVOO, and for the
packaging process; (iii) the couriers, which are responsible for
olives and EVOO transportation; (iv) the sellers, which are the
final destination of the production process and are responsible
for EVOO distribution to final users.

In this section we present BRUSCHETTA, a blockchain-
based application for the traceability and the certification
of EVOO. The goal of BRUSCHETTA is to monitor ev-
ery production process in order to obtain critical informa-
tion for estimating the quality of the final product. We
made BRUSCHETTA publicly available on Github1. The
BRUSCHETTA architecture is illustrated in Fig. 1. As it can
be seen from the figure, BRUSCHETTA uses Hyperledger
Fabric as blockchain technology [13].

Hyperledger Fabric, or simply Fabric, is a popular, open-
source, permissioned blockchain. The key points of Fabric is
that it is highly modular and does not require a native cryp-
tocurrency to incentivise the consensus protocol executions.
Fabric natively supports smart contracts, which can be defined
as trusted distributed applications that gain their security from
the blockchain and the underlying consensus among the peers.
Fig. 2 presents the Hyperledger Fabric model. Fabric users are
grouped into two or more organizations. In every organization
we have three types of users depending on their role on
the blockchain, namely nodes, endorsing peers and orderer
nodes. Nodes are users that can only generate new transactions
and read the ledger history. Endorsing peers are users that
are responsible for verifying that a transaction follows all
the endorsing policies linked to the node that generated the

1BRUSCHETTA available at: http://bit.ly/bruschetta unipi

transaction. In particular, an endorsing policy is a rule that
defines the necessary and sufficient conditions for considering
valid a transaction. Finally, orderer nodes are users that are
responsible for ordering transactions, grouping them into new
blocks, and executing the consensus protocol.

Following the above mentioned conventions of Hyperledger
Fabric, users in BRUSCHETTA are grouped in four different
organizations, which respectively represent the four different
parties involved in the EVOO supply chain, as shown in
Fig. 1. Every organization owns several peer nodes and orderer
nodes in order to implement all the basic functions of Fabric.
BRUSCHETTA is enriched with several endorsing policies so
that: (i) a node belonging to an organization can not play
the role of a node belonging to another organization; (ii) a
transaction recording a product transfer between two nodes
belonging to different organizations is included in Hyperledger
Fabric when both parties agree on the quality of the product
transferred.

A. BRUSCHETTA Processes

BRUSCHETTA divides the EVOO supply chain in six
processes: (i) olives farming process, (ii) olives harvesting pro-
cess, (iii) olives transport process, (iv) olives transformation
process, (v) packaging process and (vi) oil transport process.
We designed different profiles for every process that group
critical information for the relevant process. Specifically, every
profile represents one or more transactions that are generated
by nodes and included in the Hyperledger Fabric blockchain,
so that the entire history of every process can be reconstructed
when it is required.

The main factors that can affect the EVOO quality during
the olives farming process are categorized in: (i) the weather
conditions, i.e., temperature, humidity and air pollution, (ii)
the chemical treatments on plantations of olive trees, and
(iii) the chemical composition of the fields. All this factors
are collected during the farming process by a set of sensors
deployed in every plantation, which periodically include data
in a olives farming profile.

During the olives harvesting process, instead, the critical
aspects that affect the EVOO quality are the time period in
which the olives are harvested and how long the harvested
olives are stored since the transformation process starts. More-
over, the harvesting method, i.e., if they are harvested by hand
or by using specific machines, sensibly affects the acidity of
olives and consequently the final EVOO quality [14]. In the
harvesting process data are grouped and included in a olives
harvesting profile by farmers.

The olives transport process, i.e., the olives transportation
from the farmers to the makers is a very critical process and
must be carefully monitored. In particular, the olives temper-
ature during the transport assumes is a critical parameter, and
it must be periodically monitored and included in a olives
transport profile by temperature sensors deployed on couriers’
vans.

The transformation process, i.e., the process in which EVOO
is made starting from olives, represents the most critical one

in the EVOO supply chain. The transformation process is
divided into six tasks, namely, de-leafing, washing, crushing,
malaxing, decanting and separation. Temperature represents
a key parameter in these tasks. All the temperature values
are collected during the transformation process by a set of
temperature sensors deployed on the makers’ factories and
included in a olives transformation profile.

The packaging process consists of bottling EVOO. It is
important to keep the temperature constant during this process
in order to preserve the characteristic of EVOO, such as colour
and scent. The temperature values collected by temperatures
sensors during the packaging process are included in a pack-
aging profile.

The temperatures still remains a key parameter in the oil
transport process for preserving EVOO characteristics. In
particular, during this process the temperature should not have
large variations. For this reason, the temperature values are
collected by temperature sensors deployed in couriers’ vans
and included in an oil transport profile.

Finally, sellers and end-users can easily retrieve the entire
supply chain of a single bottle of EVOO, by using a web
application2 which reads the blockchain transactions and re-
constructs the entire history of the EVOO.

B. Threat Model

As we have just said, the EVOO production process in-
volves multiple industrial parties with, typically, conflicting
objectives. For example, a party may be interested in claiming
false statements about its production process to take economic
advantages at the cost of poor quality of the final product. In
our scenario, we can identify a set of internal and external
threats.

From the inside, a node of the system may be interested
in degrading the reputation of another node by assuming the
victim identity and starting to transmit data that nominally
degrade the quality of the product. For example, an adversary
farmer A tries to transmit malicious olive farming profiles
for a plantation of farmer B. However, BRUSCHETTA avoid
this behaviour by using a set of implemented endorsing
policies. Another adversarial scenario is related to a malicious
entity which is interested in changing its own profiles or the
profiles of another node. Both situations are avoided by the
immutability of Hyperledger Fabric blockchain.

From the outside, an external adversary is interested in
compromising the correctness of the system, for example
by deleting, tampering or stealing data. Data tampering and
deleting are easily avoided by enforcing immutability. Data
stealing is instead avoided by securing data with encryption,
or by enforcing endorsing policies for implementing reading
permissions for the Hyperledger Fabric transactions.

IV. PERFORMANCE EVALUATION

In order to test the proposed solution a performance eval-
uation based on simulations is carried out. The analysis, in

2Web application available at http://bit.ly/bruschetta webapp

Transaction
Generator

Block i+1 Block i-1 Block i

Blockchain

Transactions Queue

Fig. 3. BRUSCHETTA simulation model on OMNet++

TABLE I
SIMULATION PARAMETERS

Max transactions per block N [10, 20, 50, 100, 200]
Transaction rate λ [1, 0.1, 0.01, 0.005] txs/s
Consensus algorithm execution time et [25, 50, 200, 500] ms
Maximum block generation time T 30 s

particular, evaluates the performance of BRUSCHETTA when
different settings of the Hyperledger Fabric are considered,
in order to find the proper set of values. The focus is on
measuring the time required to store on the blockchain a
new value in order to ensure that the new data is published
with a delay that makes a real deployment of BRUSCHETTA
feasible.

To this aim, a model of the BRUSCHETTA system is
implemented in OMNeT++3, a popular event-based simula-
tor written in C++ and freely available. The simulator has
been adopted for its modular design that allows a rapid and
simple definition of novel simulation scenarios leveraging a
standard set of existing modules. The BRUSCHETTA system
is modelled in OMNeT++ as shown in Fig. 3. The Hyperledger
Fabric is modeled as a M/M/1 queuing system with bulk
departures, i.e. transactions are dequeued in groups. Each
group represents a new block in the blockchain and can have
a variable number of transactions up to N (max transactions
per block). A new block is generated whenever there are
sufficient enqueued transactions to fill a block, at least N ,
or when a timer expires, which ensures that two blocks are
generated within a maximum block generation time T . In
order to model the time required for the consensus algorithm
to converge, a fixed execution time et is introduced to delay
the publication of the new block on the blockchain after its
generation. Transactions are generated by a generator module
following a Poisson process characterized by a transaction
generation rate λ.

The parameters and the corresponding values considered
in our simulations are summarized in Table I. Different
values of transactions per block, transaction generation rate
and execution time are considered. In order to measure the
performance the transaction delay is collected. The metric is
defined as the time between the generation of a transaction
and its publication on the blockchain. The transaction delay
is considered to measure the time required for the transaction
to be validated and published, thus providing an indication
whether BRUSCHETTA is sufficiently reactive to handle the
transactions in a practical implementation or not. In order to

3OMNeT++ website: https://omnetpp.org/

obtain statistically sound results, every simulation scenario is
replicated 30 times with independent random seeds. In the
following results the average transaction delay value across
different replicas are shown along with the corresponding 95-
th confidence intervals.

0 100 200 300 400 500
Transactions per block N

0

1

2

3

4

5

De
la

y
(s

)

et = 25ms
 = 1 tx/s
 = 10 txs/s
 = 100 txs/s
 = 200 txs/s

0 100 200 300 400 500
Transactions per block N

0

1

2

3

4

5

De
la

y
(s

)

et = 50ms
 = 1 tx/s
 = 10 txs/s
 = 100 txs/s
 = 200 txs/s

0 100 200 300 400 500
Transactions per block N

0

1

2

3

4

5

De
la

y
(s

)

et = 200ms
 = 1 tx/s
 = 10 txs/s
 = 100 txs/s
 = 200 txs/s

0 100 200 300 400 500
Transactions per block N

0

1

2

3

4

5

De
la

y
(s

)

et = 500ms
 = 1 tx/s
 = 10 txs/s
 = 100 txs/s
 = 200 txs/s

Fig. 4. Transaction delay vs transactions per block with different values of
execution time

Fig. 4 reports the transaction delay obtained with an increas-
ing number of transactions per block, considering different
values of the consensus algorithm execution time. For the sake
of readability the graphs show the delay up to 5s. In order to
provide full detail on the results, a complete plot of the delay
is reported in Fig. 5 and Fig. 6 for two specific configuration,
i.e. et = 50ms and et = 200ms, respectively.

Let us analyze first the results obtained with small execution
times, i.e. et = 25ms and et = 50ms. When a sustained trans-
action generation rate, i.e. λ = 100txs/s and λ = 200txs/s,
is considered, the resulting delay is significantly below T ,
meaning that the generation of a new block is always triggered
by a sufficient number of transactions enqueued.

As expected, in these scenarios the transaction delay in-
creases as N increases or as λ decreases. This can be explained
considering that a lower λ or a larger N result in a higher
queue waiting time experienced by each transaction. A lower λ
results in the generation of a lower number of transactions that,
in turn, results in a lower number of transactions enqueued
thus requiring more time to trigger the generation of a block.
Likewise larger blocks require more time to reach the number
of transactions necessary to fill the block.

This behaviour is exacerbated with λ = 1txs/s and λ =
10txs/s, which results in a delay value that rapidly increases
as N increases, reaching a delay larger than 5s with N > 50
and N > 200, respectively. In order to offer a complete view
of the results in Fig. 5 we report the results obtained with
et = 50ms with a y-scale that goes up to 20s. As can be seen
the delay grows until a maximum delay of 15s is reached,
meaning that a new block is generated every 30s when the

0 100 200 300 400 500
Transactions per block N

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

De
la

y
(s

)

et = 50ms
 = 1 tx/s
 = 10 txs/s
 = 100 txs/s
 = 200 txs/s

Fig. 5. Transaction delay vs transactions per block with et = 50ms

0 100 200 300 400 500
Transactions per block N

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

De
la

y
(s

)

et = 200ms
 = 1 tx/s
 = 10 txs/s
 = 100 txs/s
 = 200 txs/s

Fig. 6. Transaction delay vs transactions per block with et = 200ms

timer expires, as the transaction generation rate is not sufficient
to trigger the generation of new blocks.

A similar behaviour is observed with larger execution times,
i.e. et = 200ms and et = 500ms, and low transaction
generation rates, i.e. λ = 1tx/s and λ = 10txs/s: the
transaction delay increases up to 15s the maximum value. A
different behaviour is, instead, observed when larger execution
times, i.e. et = 200ms and et = 500ms, and high generation
rates are considered, i.e. λ = 100txs/s and λ = 200txs/s.
Specifically, the transaction delay starts from a very high value,
decreases up to a minimum, and then starts to increase again.
In order to obtain an insight on this behaviour in Fig. 6 we
report the delay with a scale up to 20s. As can be seen
the delay obtained with a very small N , i.e. below 20, is
even higher than 15s. This very high value is due to the fact
that the execution time of the consensus algorithm becomes
a bottleneck with these configurations. With small blocks
and a high transaction generation rate, blocks can be created
continuously, in other words a block is generated after another.
The system cannot register the transactions with the same rate
they arrive, consequently they are enqueued for a long time.
As N increases, the delay reduces as less blocks are created,
until a minimum delay is reached. After this minimum the
delay starts increasing again, due to the fact that transactions

TABLE II
SIMULATION PARAMETERS WITH NETWORK LOAD VARIATIONS

Max transactions per block N 10
Maximum block generation time T 30 s
Consensus algorithm execution time et 200 ms
Transaction generation rates λ [10, 40, 100] txs/s
Transaction generation rates changing time t [2500, 4000] s

2000 2250 2500 2750 3000 3250 3500 3750 4000 4250
Time (s)

0

20

40

60

80

De
la

y
(s

)

Average Delay over the time

2000 2250 2500 2750 3000 3250 3500 3750 4000 4250
Time (s)

0

25

50

75

100

Ra
te

 (t
xs

/s
)

Transaction generation rate over the time

Fig. 7. Average transaction delay with variable mean transaction inter-arrival
times

have to wait longer in order to reach the minimum number of
transactions required to trigger the creation of a block.

V. DYNAMIC AUTO-TUNING MECHANISM

In a business scenario, transaction delay represents a critical
performance index that may affect the entire supply chain.
Moreover, in a realistic situation, the transaction generation
rate may vary over the time and in an unpredictable way. This
is particularly true when IoT devices are involved in generating
new transactions. For this reason, a static configuration of the
Fabric blockchain may be unsuitable due to the high variability
of the incoming transactions.

In order to show the problems stemming from a static
configuration, we carried out some additional simulation ex-
periments of the BRUSCHETTA system with OMNeT++. The
parameter and the corresponding values considered in our
simulation are summarized in Table II. In particular, we took in
consideration three different values of transaction generation
rates during every simulation experiment. We started from a
low transaction rate λ = 10txs/s. Then, we switched at time
t = 2500s to a higher transaction generation rate λ = 40txs/s.
Finally, we increased λ up to 100txs/s at time t = 4000s.
Fig. 7 shows the average transaction delay during the simula-
tion experiments. As expected, the average transaction delay
remains stable with a high transaction generation rate, i.e., λ =
10txs/s. When the transaction generation rate increases to
λ = 40txs/s, the transaction delay slightly increases, reaching
a stable value equal to 8s, meaning that the blockchain is still
able to handle the incoming transactions. However, when the

2000 2500 3000 3500 4000
Time (s)

0

2

4

6
De

la
y

(s
)

(A) Impact of auto-tuning period P on average transaction delay
ws = 30s
ws = 60s
ws = 120s

2000 2500 3000 3500 4000
Time (s)

0

5

10

15

20

De
la

y
(s

)

(B) Impact of N parameter on average transaction delay
bG = 2
bG = 10
bG = 50

Fig. 8. (A) Transaction delay with different auto-tuning periods P and (B)
Transaction delay with ∆N values. The starred points are the instants in
which the dynamic mechanism changes the number of max transactions per
block N .

transaction generation rate increases further to λ = 100txs/s,
the transaction delay dramatically increases, from 8s to almost
70s, in a time interval of 4s.

In order to mitigate this problem, we implemented a
dynamic mechanism that periodically monitors the network
state and automatically tunes the blockchain parameters. In
particular, our dynamic auto-tuning mechanism is periodically
executed with a fixed auto-tuning period P . It computes the
average transaction delay in the last P seconds and compares it
with the average values of the past average transaction delays.
If the actual average transaction delay value is higher than the
average of the past average transaction delays, the mechanism
increases of a fixed value ∆N the number of max transactions
per block N , so that a larger number of transactions can be
handled at the same time. Otherwise, if the actual average
transaction delay value is lower than the average of the past
average transaction delays, the mechanism decreases of a fixed
value ∆N the number of transactions per block.

The dynamic mechanism has been evaluated in OMNeT++.
We took into consideration two different scenarios in our
simulation experiments. In both scenarios, the transaction gen-
eration rate is increased following the same pattern reported
in Fig. 7. In the first scenario, we evaluated the mechanism
with different auto-tuning periods P and a fixed value ∆N
equal to 10.

Fig. 8A shows the transaction delay with different auto-
tuning periods P . As expected, with a low auto-tuning period,
i.e., P = 30s, the mechanism quickly reacts to varying net-
work conditions, keeping the transaction delay quite low. With
higher auto-tuning period values, i.e., P = 60s and P = 120s,
the mechanism reacts slowly to the transaction generation rate
increases. In particular, the maximum transactions per block
N increases twice in order to bring the transaction delay back
to reasonable values.

In the second scenario, we evaluated the mechanism with
different ∆N values, keeping the auto-tuning period P fixed
and equal to 60s. Fig. 8B shows the transaction delay with
different ∆N values. With a very low value of ∆N , i.e.,
∆N = 2, the blockchain suffers of frequent changes of the
maximum transaction per block N when a burst of transactions
arrives, which may be unfeasible if the transaction generation
rate becomes even higher than in the considered scenario. If
case of a high value of ∆N , i.e., ∆N = 50, the blockchain
does not suffer of transaction delays when the transaction
generation rate increases. This can be explained by considering
that the queue size becomes very large when N changes at
time t = 2500s, so that the queue can easily handle a burst
of incoming transaction. However, if the max transactions
per block are too high, we could experience high transaction
delays with low transaction generation rates. This is because
the block generation is triggered only by the maximum block
generation time T .

We than propose to adopt the values P = 60s and ∆N = 10
as standard parameters for our dynamic auto-tuning mecha-
nism, as we obtained moderated transaction delay changes and
a low number of transaction per block N changes.

VI. CONCLUSIONS

In this paper, we presented BRUSCHETTA, a blockchain-
based application for the traceability and the certification of
Extra Virgin Olive Oil (EVOO). BRUSCHETTA provides a
blockchain-based system to enforce the certification of EVOO
by tracing the entire process of production: from the plantation
to the shops. The proposed BRUSCHETTA architecture allows
to collect and certify data from all the different produc-
tion phases, provided by users or sensors. The adoption of
blockchain allows final users to access a tamper-proof copy
of the entire history of the product for example from their
smartphone. In order to show that the proposed system can be
adopted in real industrial scenarios, a performance evaluation
based on simulations was carried out. Results showed that the
proposed approach can not always be suitable in real industrial
scenarios, where the transactions arrival rate may vary over the
time in an unpredictable way. For this reason, we proposed and
evaluated a mechanism for dynamic auto-tuning of blockchain
parameters in order to ensure that the information is published
in the blockchain in a timed manner.

ACKNOWLEDGEMENTS

This work was partially supported by the Italian Ministry
of Education and Research (MIUR) in the framework of the
CrossLab project (Departments of Excellence) and by the
project PRA 2018 81 ”Wearable sensor systems: personalized
analysis and data security in healthcare” funded by the Uni-
versity of Pisa.

REFERENCES

[1] T. Heo, K. Kim, H. Kim, C. Lee, J. H. Ryu, Y. T. Leem, J. A. Jun,
C. Pyo, S.-M. Yoo, and J. Ko, “Escaping from ancient rome! applications
and challenges for designing smart cities,” Transactions on Emerging
Telecommunications Technologies, vol. 25, no. 1, pp. 109–119, 2014.

[2] Q. Zhang, T. Huang, Y. Zhu, and M. Qiu, “A case study of sensor data
collection and analysis in smart city: Provenance in smart food supply
chain,” International Journal of Distributed Sensor Networks, vol. 9,
no. 11, p. 382132, 2013.

[3] C. Perera, Y. Qin, J. C. Estrella, S. Reiff-Marganiec, and A. V. Vasilakos,
“Fog computing for sustainable smart cities: A survey,” ACM Computing
Surveys (CSUR), vol. 50, no. 3, p. 32, 2017.

[4] F. Schwägele, “Traceability from a european perspective,” Meat science,
vol. 71, no. 1, pp. 164–173, 2005.

[5] D. L. Garcia-Gonzalez and R. Aparicio, “Research in olive oil: chal-
lenges for the near future,” Journal of agricultural and food chemistry,
vol. 58, no. 24, pp. 12 569–12 577, 2010.

[6] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.
[7] A. Dorri, S. S. Kanhere, R. Jurdak, and P. Gauravaram, “Blockchain for

iot security and privacy: The case study of a smart home,” in 2017 IEEE
International Conference on Pervasive Computing and Communications
Workshops (PerCom Workshops). IEEE, 2017, pp. 618–623.

[8] E. Mengelkamp, B. Notheisen, C. Beer, D. Dauer, and C. Weinhardt, “A
blockchain-based smart grid: towards sustainable local energy markets,”
Computer Science-Research and Development, vol. 33, no. 1-2, pp. 207–
214, 2018.

[9] M. Mettler, “Blockchain technology in healthcare: The revolution starts
here,” in 2016 IEEE 18th International Conference on e-Health Net-
working, Applications and Services (Healthcom). IEEE, 2016, pp. 1–3.

[10] K. Biswas and V. Muthukkumarasamy, “Securing smart cities using
blockchain technology,” in 2016 IEEE 18th international conference on
high performance computing and communications; IEEE 14th interna-
tional conference on smart city; IEEE 2nd international conference on
data science and systems (HPCC/SmartCity/DSS). IEEE, 2016, pp.
1392–1393.

[11] C. Cachin and M. Vukolić, “Blockchain consensus protocols in the wild,”
arXiv preprint arXiv:1707.01873, 2017.

[12] M. Castro and B. Liskov, “Practical byzantine fault tolerance and
proactive recovery,” ACM Transactions on Computer Systems (TOCS),
vol. 20, no. 4, pp. 398–461, 2002.

[13] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis,
A. De Caro, D. Enyeart, C. Ferris, G. Laventman, Y. Manevich et al.,
“Hyperledger fabric: a distributed operating system for permissioned
blockchains,” in Proceedings of the Thirteenth EuroSys Conference.
ACM, 2018, p. 30.

[14] C. Saglam, Y. Tuna, U. Gecgel, and E. Atar, “Effects of olive harvesting
methods on oil quality,” APCBEE procedia, vol. 8, pp. 334–342, 2014.

